Home » Good News in english, News in English of the world

Evolution and Survival on Eutherian Sex Chromosomes

Inserito da

Gender_determinationSince the two eutherian sex chromosomes diverged from an ancestral autosomal pair, the X has remained relatively gene-rich, while the Y has lost most of its genes through the accumulation of deleterious mutations in nonrecombining regions. Presently, it is unclear what is distinctive about genes that remain on the Y chromosome, when the sex chromosomes acquired their unique evolutionary rates, and whether X-Y gene divergence paralleled that of paralogs located on autosomes. To tackle these questions, here we juxtaposed the evolution of X and Y homologous genes (gametologs) in eutherian mammals with their autosomal orthologs in marsupial and monotreme mammals. We discovered that genes on the X and Y acquired distinct evolutionary rates immediately following the suppression of recombination between the two sex chromosomes. The Y-linked genes evolved at higher rates, while the X-linked genes maintained the lower evolutionary rates of the ancestral autosomal genes. These distinct rates have been maintained throughout the evolution of X and Y. Specifically, in humans, most X gametologs and, curiously, also most Y gametologs evolved under stronger purifying selection than similarly aged autosomal paralogs. Finally, after evaluating the current experimental data from the literature, we concluded that unique mRNA/protein expression patterns and functions acquired by Y (versus X) gametologs likely contributed to their retention. Our results also suggest that either the boundary between sex chromosome strata 3 and 4 should be shifted or that stratum 3 should be divided into two strata.

c7.15.X.YUsing recently available marsupial and monotreme genomes, we investigated nascent sex chromosome evolution in mammals. We show that, in eutherian mammals, X and Y genes acquired distinct evolutionary rates and functional constraints immediately after recombination suppression; X-linked genes maintained lower, ancestral (autosomal), rates, whereas the evolutionary rates of Y-linked genes increased. Most X and, unexpectedly, Y genes evolved under stronger purifying selection than similarly aged autosomal paralogs. However, we also observed that the divergence of gametologs and paralogs shared similar features. In addition, many Y-linked copies evolved unique functions and expression patterns compared to their counterparts on the X chromosome. Therefore, our results suggest that to be retained on the Y chromosome, genes need to acquire separately valuable expression and/or functions to be safeguarded by purifying selection.

Melissa A. Wilson, Kateryna D. Makova Department of Biology  Pennsylvania State University U S news from plosgenetics.org

logo-108x89123
Dear friend,
this is an open project and accepts the help of anyone willing to make positive thinking…
Send your proposals (articles, cartoons, funny pictures and videos) and find an open door where to move your ideas … POSITIVE!
Support and Spread the only e-magazine dedicated to good news and smiles!

Write to: goodnewsenglish@goodnews.ws
Show on your site a link to our www.goodnews.ws